Селекция как наука о модификации пород живых организмов #55

С Селекция – это наука о методах создания новых и улучшения существующих пород животных, сортов растений и штаммов микроорганизмов. Селекция опирается на достижения генетики, молекулярной биологии, биохимии и других наук.

Методы и направления селекции

Теоретической основой селекции является генетика. Породой, сортом, штаммом называют популяцию организмов, искусственно созданную человеком и характеризующуюся определенными наследственными особенностями. Все особи внутри сорта, породы, штаммы имеют сходную наследственную организацию, внешние признаки и однотипную реакцию на влияние факторов внешней среды. Например, молочные породы крупного рогатого скота отличаются величиной удоя, процентом жирности и содержанием белка в молоке.

Основными задачами современной селекции являются:

  • повышение урожайности сортов культурных растений, увеличение продуктивности пород домашних животных и штаммов микроорганизмов;
  • улучшение качества продукции (технологические свойства льна, содержание белка и клейковины в зерне и т.п.);
  • улучшение физиологических свойств (скороспелость, иммунитет к заболеваниям, морозостойкость и т.п.);
  • повышение интенсивности развития (у растений «отзывчивость» на подкормку, у животных на корм и содержание).

Особенно важно получение сортов растений, устойчивых к заболеваниям и поддающихся механизированной уборке, например короткостебельных неполегающих сортов злаков.

Для успешной селекционной работы необходимо:

  • исходное сортовое и видовое разнообразие растений и животных;
  • изучениероли мутации в проявлении и развитии исследуемых признаков;
  • исследованиезакономерностей наследования при гибридизации;
  • применение различных форм искусственного отбора.

Успех селекционной работы во многом зависит от генетического разнообразия исходной группы растений и животных. Генофонд существующих пород животных и сортов растений ограничен по сравнению с генофондом исходного дикого вида. С целью изучения многообразия и географического распространения культурных растений Н.И. Вавилов провел многочисленные экспедиции в разные уголки земного шара. В результате работы этих экспедиций был собран огромный семенной материал, используемый в селекционной работе, и выделены центры происхождения культурных растений. Их семь:

  1. южноазиатский – родина риса, сахарного тростника, цитрусовых;
  2. восточноазиатский – родина сои, проса, гречихи, многих плодовых и овощных культур;
  3. юго-западноазиатский – родина пшеницы, гороха, чечевицы, винограда;
  4. средиземноморский – родина маслин, капусты, свеклы;
  5. абиссинский – родина твердых пшениц, ячменя, кофейного дерева;
  6. центральноамериканский – родина кукурузы, какао, перца, фасоли, длинноволокнистого хлопка;
  7. южноамериканский – родина картофеля, табака, ананаса, подсолнечника.

Открытые Н. И. Вавиловым закономерности географического распределения сельскохозяйственных растений и расселения их из первичных центров облегчают работу селекционеров, позволяют быстрее подбирать необходимый для опытов исходный материал и в определенной мере предвидеть результаты. Исходный материал имеет первостепенное значение для успешной селекции. Им могут быть дикие формы, искусственно полученные мутантные формы, особи с комбинативной изменчивостью, сорта и породы‚ полученные в других климатических условиях.

Селекция растений

Основными методами селекции растений являются гибридизация и искусственный отбор.

В начале селекционной работы ставится конкретная задача, для выполнения которой подбирают соответствующие родительские формы. При невозможности найти нужный исходный материал получают индуцированные мутации, среди которых иногда удается найти и полезные, используемые в дальнейшей селекционной работе.

Гибридизация – это получение гибридов от скрещивания генетически разнородных организмов. В селекции применяют близкородственное скрещивание (инбридинг) и скрещивание неродственных организмов (аутбридинг).

Близкородственная гибридизация у растений основана на искусственном опылении своей пыльцой обычно перекрестноопыляемых растений. Самоопыление ведет к повышению гомозиготности и закреплению наследственных свойств. Потомство, полученное от одного гомозиготного растения путем самоопыления, называется чистой линией. У особей чистых линий часто снижаются жизнеспособность и урожайность.

Если скрестить разные чистые линии между собой (межлинейная гибридизация)‚ то наблюдается явление гетерозиса – повышенная жизнеспособность и плодовитость в первом поколении гибридов, которая постепенно снижается. Гетерозис объясняется переходом большинства генов в гетерозиготное состояние. Межлинейная гибридизация позволяет повысить урожайность семян кукурузы на 20 — 30%. Явление гетерозиса у растений можно закрепить при вегетативном размножении (клубнями, черенками, луковицами и т.д.).

Отдаленная гибридизация позволяет сочетать в одном организме ценные признаки разных видов и даже родов. Такая гибридизация осуществляется с трудом, и межвидовые гибриды обычно бесплодны, так как затруднена конъюгация хромосом разных видов при мейозе. Преодолеть бесплодность межвидовых гибридов впервые удалось Г.Д. Карпеченко (1924). Он получил гибрид редьки и капусты с диплоидным набором хромосом – 9 «редечных» и 9 «капустных», который был бесплоден. Для преодоления бесплодия Карпеченко удвоил число хромосом каждого вида (получил полиплоидную форму гибрида), в результате чего в кариотипе оказалось 36 хромосом, по 18 «редечных» и «капустных». Это создало возможность коньюгации гомологичных хромосом капусты с «капустными» и редьки с «редечными». Каждая гамета несла по одному набору хромосом капусты и редьки (9 + 9 = 18). В зиготе вновь оказывалось 36 хромосом. Полученный межвидовой гибрид стал плодовитым. Таким образом, полиплоидия является одним из способов восстановления плодовитости межвидовых гибридов у растений. Кроме того, многие полиплоидные формы растений обладают большей урожайностью и стойкостью к неблагоприятным условиям среды по сравнению с диплоидными.

После получения гибридов производится искусственный отбор. Отбор заключается в сохранении для размножения растений с желаемой комбинацией признаков. При массовом отборе выделяют группу особей с нужными признаками и получают потомство. При повторных посевах отбор приходится повторять, так как особи могут в дальнейшем давать расщепление. Индивидуальный отбор проводят путем выращивания потомков одной особи. При таком отборе результат достигается быстрее, но потомков получается значительно меньше. Индивидуальный отбор чаще проводят среди самоопыляющихся растений и получают чистые линии, которые дают ценный исходный материал для дальнейшей селекции.

Искусственный отбор на основе наследственной изменчивости служит основным способом получения новых сортов растений. Однако, одновременно на сорт действует и естественный отбор, повышая приспособленность растений к конкретным условиям среды. Вновь созданный сорт всегда является результатом деятельности человека и окружающей среды.

В последние годы селекционеры получают целые растения (плодовые кустарники, земляника) путем стимулирования деления клеток тканей растений в культуре. В этом случае образуются клоны растений с одинаковым генотипом.

Выведение новых высокоурожайных сортов растений позволяет резко интенсифицировать сельскохозяйственное производство и обеспечить население продовольствием. Творческое использование всех методов селекционной работы приводит к большим успехам. Озимая пшеница Безостая 1, созданная академиком П.П. Лукьяненко, имеет высокую урожайность и отличные мукомольные качества. Урожайность новых сортов пшениц (Аврора, Кавказ) достигают 100 ц/га. Академиком Н.В. Цициным получен ценный гибрид пшеницы и ржи – тритикале, который сочетает качества пшеницы (высокие мукомольные качества) и ржи (способность расти на бедных почвах). Коллектив селекционеров, возглавляемый академиком В.С. Пустовойтом, добился увеличения содержания масла в семенах подсолнечника на 20%. За последние годы благодаря созданию новых полиплоидных сортов (А.Н. Лутков, В.П. Зосимович) резко повысилась сахаристость и урожайность сахарной свеклы.

Селекция животных

Основные подходы к селекции животных не отличаются от принципов селекции растений. Новые породы животных получают на основе наследственной изменчивости путем искусственного отбора. Однако селекция животных имеет и некоторые особенности, вытекающие из природы организма животного:

  • животные, имеющие хозяйственное значение, размножаются только половым способом;
  • половая зрелость у них наступает относительно поздно;
  • самки приносят немногочисленное потомство, что затрудняет и замедляет процесс селекции.

При селекционной работе с животными важное значение имеет учет экстерьерных признаков. Экстерьер – это совокупность наружных форм животных, их телосложение и соотношение частей тела. Разные породы животных неодинаково реагируют на изменения внешних условий. Так, у мясных пород крупного рогатого скота улучшение питания прежде всего сказывается на увеличении массы тела, а у молочных – на повышении удоев. Началом селекционной работы является подбор родительских пар исходя из поставленной задачи. В подборе производителей важно учитывать их родословные, в которых должны быть отмечены экстерьерные особенности и продуктивность, в течение ряда поколений.

Скрещивание при работе с животными является основным способом получения разнообразия исходного материала. Как и при селекции растений, применяют два типа скрещивания: неродственное (аутбридинг) и родственное (инбридинг).

Аутбридинг – скрещивание между особями одной или разных пород – при строгом отборе приводит к поддержанию свойств или улучшению их в ряду поколений гибридов.

Инбридинг – скрещивание особей одного поколения или родителей и потомков – применяется для перевода большинства генов в гомозиготное состояние. Происходит закрепление хозяйственно ценных признаков, однако при этом часто наблюдается ослабление животных, уменьшение их устойчивости к воздействию факторов среды. Чтобы этого избежать, проводят строгий отбор особей. При селекционной работе инбридинг обычно является лишь одним из этапов улучшения пореды. За ним следует скрещивание разных линий, что переводит большинство генов в гетерозиготное состояние, при котором проявляется гетерозис (бройлерные цыплята).

В селекции домашних животных для определения наследственных свойств самцов по признакам, которые у них не проявляются, например по количеству молока и жирномолочности у быков или яйценоскости у петухов, используется метод определения качества производителей по потомству. От производителя получают немногочисленное потомство и сравнивают его продуктивность со средней продуктивностью породы. Если продуктивность дочерей выше, чем матерей, то это говорит о большой ценности производителя и его используют для дальнейшего улучшения породы. От хорошего самца можно получить большое потомство с помощью искусственного осеменения. В последнее время эмбрионы ценных пород крупного рогатого скота получают в пробирке или проводят клонирование, а затем полученные эмбрионы вводят в матку беспородных животных для дальнейшего развития. Эти методы позволяют значительно ускорить селекционную работу.

Ценные породы домашних животных получены академиком М.Ф. Ивановым, например белая украинская свинья и асканийский рамбулье. Высокой молочной продуктивностью характеризуется костромская порода крупного рогатого скота.

Наряду с внутривидовой гибридизацией в животноводстве применяется и отдаленная гибридизация. С глубокой древности человек использует мула (гибрид кобылы с ослом). В Казахстане в результате гибридизации тонкорунных овец с диким горным бараном архаром выведена новая порода тонкорунных овец – архаромеринос. Ведутся работы по гибридизации яка с крупным рогатым скотом.

Селекция микроорганизмов

Микроорганизмы способны производить жизненно важные продукты, но природные штаммы их в основном низкопродуктивны. Поэтому в микробиологической промышленности применяют селекционные методы: индуцированный‚ мутагенез и искусственный отбор. Для получения мутаций используют ионизирующие излучения и химические мутагены. Применение мутагенных факторов и целенаправленного отбора позволило повысить продуктивность штаммов в сотни и тысячи раз.

Микроорганизмы отличаются характерными особенностями, важными для производства и селекции:

  • содержат значительно меньше генов, чем клетки высокоорганизованных видов;
  • имеют простую регуляцию генной активности;
  • очень быстро размножаются;
  • их гаплоидный геном позволяет проявляться фенотипически любой мутации уже в первом ппоколении.

Использование человеком живых организмов и биологических процессов для промышленного получения продуктов называется биотехнологией. Биотехнологические процессы используются человеком с древних времен: молочнокислые бактерии – для получения молочнокислых продуктов, различные штаммы дрожжей – в виноделии, пивоварении, хлебопечении.

Особенно интенсивно начала развиваться микробиологическая промышленность с семидесятых годов ХХ века. В качестве питательной среды для бактерий начали использоваться непищевые продукты: жидкие парафины нефти, синтетические спирты, отходы деревообрабатывающей промышленности и др. Получаемые таким путем белково-витаминные препараты позволяют решить проблему нехватки кормового белка и повысить продуктивность животноводства. Кроме того, микробиологическая промышленность производит ферменты, антибиотики, гормоны, аминокислоты и другие лечебные препараты, необходимые человеку.

Для создания новых штаммов микроорганизмов в последнее время применяют генную инженерию конструирование новых генетических структур по заранее намеченному плану. Генная инженерия развивается на базе молекулярной биологии, генетики, биохимии и микробиологии. Генная инженерия включает четыре основных этапа:

  1. получение нужного гена (выделение природного или искусственный его синтез);
  2. включение этого гена в молекулу ДНК-переносчик – получение рекомбинантной молекулы ДНК;
  3. введение рекомбинантной ДНК в клетку, где она встраивается в генетический аппарат;
  4. отбор трансформированных клеток.

На основе генной инженерии в настоящее время уже освоено промышленное производство белка инсулина (гормона поджелудочной железы для лечения диабета) и интерферонов – белков, подавляющих размножение вирусов.

Генная инженерия позволяет конструировать и эукариотические клетки с новой генетической программой. В последнее время получают гибриды соматических клеток разных видов и даже животных и растений. Получены гибриды лимфоцитов с опухолевыми клетками (гибридомы), способные к длительному синтезу антител определенного типа. Созданы растения, способные усваивать атмосферный азот, что в будущем не только обогатит растительную пищу белками, но сделает ненужным применение азотных удобрений.

Биотехнология – одно из ведущих направлений современной биологии. В ближайшем будущем методы генной инженерии позволят человечеству избавиться от ряда наследственных болезней.

Оставьте комментарий