Как был открыт Уран
Вообще, такой химический элемент как уран был известен очень давно. Известно, что ещё до нашей эры природная окись урана использовалась для изготовления жёлтой глазури для керамики. Открытие этого элемента произошло можно считать в 1789 году, когда немецкий химик, по имени Мартин Генрих Клапрот, восстановил из руды черный металлоподобный материал. Этот материал Мартин решил назвать Ураном, чтобы поддержать название новой открытой планеты с одноименным названием(в этом же году была открыта планета Уран). В 1840 году было выявлено, что этот материал открытый Клапротом, оказался оксидом Урана не смотря на характерный металлический блеск. Эжен Мелькиор Пелиго из оксида синтезировал атомарный Уран и определил его атомный вес равный 120 а.е., а в 1874 году Менделеев удвоил это значение, поместив его в самую дальнюю клетку своей таблицы. Только через 12 лет решение Менделеева о удвоении массы было подтверждено опытами немецкого химика Циммермана.
Где и как добывают Уран
Уран является довольно распространенным элементом, но он распространен в виде урановой руды. Чтоб вы понимали, содержание ее в земной коре составляет 0.00027% от общей массы Земли. Урановая руда как правило входит в состав кислых минеральных пород с высоким содержанием кремния. Основными видами урановых руд являются настуран, карнотит, казолит и самарскит. Крупнейшие запасы урановых руд с учётом резервных месторождений являются такие страны как Австралия, Россия и Казахстан, причем из всех перечисленных Казахстан занимает лидирующую позицию. Добыча урана является очень не простой и дорогостоящей процедурой. Далеко не все страны могут позволить себе добывать и синтезировать чистый уран. Технология производства выглядит следующим образом: руда или минералы добываются в шахтах, сравнимо золоту или драгоценным камням. Добытые породы дробят и смешивают с водой для того, чтобы отделить урановую пыль от остальных. Урановая пыль очень тяжёлая и поэтому она выпадает в осадок быстрее остальных. Следующим шагом является очищение урановой пыли от других пород путем кислотного или щелочного выщелачивания. Процедура выглядит примерно так: урановую смесь нагревают до 150 °С и подают чистый кислород под давлением. В результате образуется серная кислота которая очищает уран от других примесей. Ну и на заключительном этапе отбирают уже чистые частицы урана. Помимо урановой пыли там попадаются и другие полезные минералы.
Опасность радиоактивного излучения урана
Все прекрасно знают такое понятие как радиоактивное излучение и то, что оно наносит непоправимый вред здоровью, который приводит к летальному исходу. Уран как раз является одним из таких элементов, который при определенных условиях может выпускать радиоактивное излучение. В свободной форме в зависимости от его разновидности он может испускать альфа и бета лучи. Альфа лучи не представляют большой опасности для человека если облучение является внешним так как у этого излучения малая проникающая способность, но при попадании внутрь организма они наносят непоправимый вред. Для сдерживания внешних альфа лучей хватит даже листа писчей бумаги. С бета излучением дела обстоят серьезнее, но не намного. Проникающая способность бета излучения выше, чем у альфа излучения, но для сдерживания бета излучения потребуется 3-5 мм ткань. Вы скажете как так? Уран же является радиоактивным элементом, который используется в ядерном оружии! Все верно, он используется в ядерном оружии, которое наносит колоссальный урон всему живому. Просто при детонировании ядерной боеголовки, основной урон живым организмам наносят гамма излучения и поток нейтронов. Данные виды излучений образуются в результате термоядерной реакции при взрыве боеголовки, которая выводит частицы урана из стабильного состояния и уничтожает все живое на земле.
Разновидности урана
Как говорилось выше, у урана есть несколько разновидностей. Разновидности подразумевают собой наличие изотопов, чтоб вы понимали изотопы подразумевают собой одинаковые элементы, но с разными массовыми числами.
Итак существуют два вида:
- Природный;
- Искусственный;
Как вы уже догадались природный тот который добывают из земли, а искусственный люди создают самостоятельно. К природным относят изотопы урана с массовым числом 238, 235 и 234. Причем U-234 является дочерним от U-238, то есть первый получается от распада второго в природных условиях. Вторая группа изотопов, которую создают искусственно, имеет массовые числа от 217 до 242. Каждый из изотопов имеет разные свойства и характеризуется разным поведением при определенных условиях. В зависимости от потребностей учёные ядерщики пытаются найти всевозможные решения проблем, ведь каждый изотоп имеет разную энергетическую ценность.
Периоды полураспада
Как уже говорилось выше, каждый из изотопов урана обладает разной энергетической ценностью и разными свойствами, одним из которых является полураспад. Для того чтобы понимать что это такое нужно начать с определения. Периодом полураспада называется время за которое число радиоактивных атомов уменьшается в двое. Период полураспада влияет на многие факторы, в пример можно привести его энергетическую ценность или полное очищение. Если в пример взять последнее то можно посчитать за какой промежуток времени произойдет полная очистка от радиоактивного заражения земли. Полураспады изотопов урана:
Массовое число | Период полураспада | Основной тип излучения |
U-233 | 15.9*10⁴ лет | альфа |
U-234 | 24.5*10⁴ лет | альфа |
U-235 | 71000*10⁴ лет | альфа |
U-236 | 2390*10⁴ лет | альфа |
U-237 | 6.75 суток | бета |
U-238 | 447000*10⁴ лет | альфа |
U-239 | 23.54 минуты | бета |
U-240 | 14 часов | бета |
Как можно увидеть из таблицы период полураспада изотопов варьируется от минут до сотен миллионов лет. Каждый из них находит себе применение в разных областях жизнедеятельности людей.
Применение
Применение урана очень широко во многих сферах деятельности, но наибольшую ценность представляет в энергетической и военной сфере. Наибольший интерес представляет изотоп U-235. Его преимущество в том, что он способен самостоятельно поддерживать цепную ядерную реакцию, которая широко используется в военном деле для изготовления ядерного оружия и в качестве топлива в ядерных реакторах. Кроме этого уран широко применяется в геологии для определения возраста минералов и горных пород, а также для определения протекания геологических процессов. В автомобилестроении и самолетостроении обеденный уран используется как противовес и центровочный элемент. Также применение было найдено в живописи, а конкретнее в качестве краски по фарфору и для изготовления керамических глазурей и эмалей. Ещё одним интересным моментом можно считать применение обеденного урана для защиты от радиоактивного излучения, как это странно не звучит.
Очень познавательно. Автор хорошо объяснил!
Обедненный уран не может навредить человеческому организму, т.е если в нем нет изотопов с массовым числом 235
Очень интересно, благодарю!
Спасибо. Ваше мнение очень важно. Мы и дальше будем стараться для вас.
При добыче главное свинцовые трусы не забыть=)